(2018). Mathematical Statistics: An Introduction to Likelihood Based Inference,
hn Wiley & Sons, New York).
, Landrain, T. E., Rodrigo, G. and Jaramillo, A. (2015). Regulatory RNA design
ough evolutionary computation and strand displacement, Methods in Molecular
logy, 1244, pp. 63–78.
A. M., Madkour, A., Ouzzani, M., McGrew, T., Omran, E. and Zhang, X. (2019).
NetApp: An interactive visual data analysis platform for molecular Expressions,
oS One, 14, pp. e0211277.
Liu, Z., Sun, M., Wang, Y., Yue, J. and Yu, G. (2019). DBS: a fast and
ormative segmentation algorithm for DNA copy number analysis, BMC
informatics, 20, pp. 1.
E., Wetmore, K. M., Price, M. N., Diamond, S., Shultzaberger, R. K., Lowe, L.
Curtin, G., Arkin, A. P., Deutschbauer, A. and Golden, S. S. (2015). The
ential gene set of a photosynthetic organism, Proceedings of the National
ademy of Sciences of the United States of America, 112, pp e6634–e6643.
go, A., Vanneschi, L., Castelli, M. and Vega-Rodriguez, M. A. (2018). A
racteristic-based framework for multiple sequence aligners, IEEE Transactions
Cybernetics, 48, pp. 41–51.
U., Zetterberg, H., Podust, V.N., Gottfries, J., Li, S., Simonsen, A., McGuire, J.,
rlsson, M., Rymo, L., Davies, H., Minthon, L. and Blennow, K. (2005).
ntification of CSF biomarkers for frontotemporal dementia using SELDITOF,
perimental Neurology, 196, pp. 273–281.
D. E., Hinton, G. E., Williams, R. J. (1986). Learning internal representations
error propagation, Parallel Distributed Processing, Rumelhart, D. F. and
Clelland, J. L. eds, pp. 318–362, the MIT press.
Molina-Tijeras, J. A., Vezza, T., Corzo, N., Montilla, A. and Utrilla, P. (2019).
estinal anti-inflammatory effects of artichoke pectin and modified pectin
ctions in the dextran sulfate sodium model of mice colitis. Artificial neural
work modelling of inflammatory markers, Food Function, 10, pp. 7793–7805.
W. (1969). A nonlinear mapping for data structure analysis, IEEE Transactions
Computers, 18, pp. 401– 402.
J. and Esteller, M. (2012). Cancer epigenomics: beyond genomics. Current
inion in Genetics and Development, 22, pp. 50–55.
C., Fariselli, P. and Casadio, P. (2018). DeepSig: deep learning improves signal
tide detection in proteins, Bioinformatics, 34, pp. 1690 – 1696.
, S., Comminiello, D., Hussain, A. and Uncini, A. (2017). Group sparse
ularisation for deep neural networks, Neurocomputing, 241, pp. 81–89.
K., Gottwein, J. M., Jensen, T. B., Prentoe, J. C., Hoegh, A. M., Alter, H. J.,
gen-Olsen. J. and Bukh, J. (2009). Development of JFH1-based cell culture
tems for hepatitis C virus genotype 4a and evidence for cross-genotype
tralization, Proceedings of the National Academy of Sciences of the United
tes of America, 105, pp. 997–1002.